Cold-Start Collaborative Filtering

نویسنده

  • Xiaoxue Zhao
چکیده

Collaborative Filtering (CF) is a technique to generate personalised recommendations for a user from a collection of correlated preferences in the past. In general, the effectiveness of CF greatly depends on the amount of available information about the target user and the target item. The cold-start problem, which describes the difficulty of making recommendations when the users or the items are new, remains a great challenge for CF. Traditionally, this problem is tackled by resorting to an additional interview process to establish the user (item) profile before making any recommendations. During this process the user’s information need is not addressed. In this thesis, however, we argue that recommendations would be preferably provided right from the beginning. And the goal of solving the cold-start problem should be maximising the overall recommendation utility during all interactions with the recommender system. In other words, we should not distinguish between the information-gathering and recommendation-making phases, but seamlessly integrate them together. This mechanism naturally addresses the cold-start problem as any user (item) can immediately receive sequential recommendations without providing extra information beforehand. This thesis solves the cold-start problem in an interactive setting by focusing on four interconnected aspects. First, we consider a continuous sequential recommendation process with CF and relate it to the exploitation-exploration (EE) trade-off. By employing probabilistic matrix factorization, we obtain a structured decision space and are thus able to leverage several EE algorithms, such as Thompson sampling and upper confidence bounds, to select items. Second, we extend the sequential recommendation process to a batch mode where multiple recommendations are made at each interaction stage. We specifically discuss the case of two consecutive interaction stages, and model it with the partially observable Markov decision process (POMDP) to obtain its exact theoretical solution. Through an in-depth analysis of the POMDP value iteration solution, we identify that an exact solution can be abstracted as selecting users (items) that are not only highly relevant to the target according to the initial-stage information, but also highly correlated with other potential users (items) for the next stage. Third, we consider the intra-stage recommendation optimisation and focus on the problem of personalised item diversification. We reformulate the latent factor models using the mean-variance analysis from the portfolio theory in economics. The resulting portfolio ranking algorithm naturally captures the user’s interest range and the uncertainty of the user preference by employing the variance of the learned user latent factors, leading to a diversified item list adapted to the individual user. And, finally, we relate the diversification algorithm back to the interactive process by considering inter-stage joint portfolio diversification, where the recommendations are optimised jointly with the user’s past preference records.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Rating Time for Cold Start Problem in Collaborative Filtering

Cold start is one of the main challenges in recommender systems. Solving sparsechallenge of cold start users is hard. More cold start users and items are new. Sine many general methods for recommender systems has over fittingon cold start users and items, so recommendation to new users and items is important and hard duty. In this work to overcome sparse problem, we present a new method for rec...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

Design a Hybrid Recommender System Solving Cold-start Problem Using Clustering and Chaotic PSO Algorithm

One of the main challenges of increasing information in the new era, is to find information of interest in the mass of data. This important matter has been considered in the design of many sites that interact with users. Recommender systems have been considered to resolve this issue and have tried to help users to achieve their desired information; however, they face limitations. One of the mos...

متن کامل

CRUC: Cold-start Recommendations Using Collaborative Filtering in Internet of Things

The Internet of Things (IoT) aims at interconnecting everyday objects (including both things and users) and then using this connection information to provide customized user services. However, IoT does not work in its initial stages without adequate acquisition of user preferences. This is caused by cold-start problem that is a situation where only few users are interconnected. To this end, we ...

متن کامل

Clustering Approach for Hybrid Recommender System

Recommender system is a kind of web intelligence techniques to make a daily information filtering for people. In this work1, Clustering techniques have been applied to the item-based collaborative filtering framework to solve the cold start problem. It also suggests a way to integrate the content information into the collaborative filtering. Extensive experiments have been conducted on MovieLen...

متن کامل

A Hybrid Collaborative Filtering Recommender System Using a New Similarity Measure

This paper presents a hybrid recommender system using a new heuristic similarity measure for collaborative filtering that focuses on improving performance under cold-start conditions where only a small number of ratings are available for similarity calculation for each user. The new measure is based on the domain-specific interpretation of rating differences in user data. Experiments using thre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIGIR Forum

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2016